Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Arch Microbiol ; 206(5): 206, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575737

RESUMEN

Silkworms are an essential economic insect but are susceptible to diseases during rearing, leading to yearly losses in cocoon production. While chemical control is currently the primary method to reduce disease incidences, its frequent use can result in loss of susceptibility to pathogens and, ultimately, antibiotic resistance. To effectively prevent or control disease, growers must accurately, sensitively, and quickly detect causal pathogens to determine the best management strategies. Accurate recognition of diseased silkworms can prevent pathogen transmission and reduce cocoon loss. Different pathogen detection methods have been developed to achieve this objective, but they need more precision, specificity, consistency, and promptness and are generally unsuitable for in-situ analysis. Therefore, detecting silkworm diseases under rearing conditions is still an unsolved problem. As a consequence of this, there is an enormous interest in the development of biosensing systems for the early and precise identification of pathogens. There is also significant room for improvement in translating novel biosensor techniques to identify silkworm pathogens. This study explores the types of silkworm diseases, their symptoms, and their causal microorganisms. Moreover, we compare the traditional approaches used in silkworm disease diagnostics along with the latest sensing technologies, with a precise emphasis on lateral flow assay-based biosensors that can detect and manage silkworm pathogens.


Asunto(s)
Técnicas Biosensibles , Bombyx , Animales , Técnicas Biosensibles/métodos , Insectos , Manejo de la Enfermedad
2.
Foodborne Pathog Dis ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563794

RESUMEN

The rapid emergence of antimicrobial resistance (AMR) in Campylobacter has reinforced its status as a foodborne pathogen of significant public health concern. Resistant Campylobacter is typically transferred to humans via the consumption of contaminated animal products, particularly poultry. The genes associated with antimicrobial resistance in Campylobacter spp. are poorly understood. To address this knowledge gap, we conducted a prevalence survey of AMR Campylobacter across 84 chicken farms in two districts of Bangladesh. Pooled cloacal swabs were collected from chickens and underwent bacteriological testing for Campylobacter spp. with PCR confirmation. Antimicrobial susceptibility was tested against 14 antibiotics by disk diffusion method, and 12 resistance genes were screened in Campylobacter-positive isolates using multiplex PCR. A total of 34 (40.5%) farms were Campylobacter-positive of which 73.5% of isolates were resistant to at least 10 antibiotics. The antimicrobial susceptibility results indicate a high level of resistance against streptomycin (97.1%), clindamycin (97.1%), ampicillin (94.1%), tetracycline (94.1%), erythromycin (91.2%), ciprofloxacin (88.2%), nalidixic acid (85.3%), and imipenem (82.4%), and comparatively a low frequency of resistance to chloramphenicol (47.1%), ceftazidime (44.1%), and colistin (35.3%). Multidrug-resistant (MDR) and extensively drug-resistant Campylobacter were identified in 97.1%, and 50% of isolates, respectively. Ten resistance genes were identified including blaTEM (in 97.1% of isolates), strA-strB (85.9%), tetA (70.6%), tetB (32.4%), qnrS (23.5%), blaCTX-M-1 (20.6%), qnrB (20.6%), blaSHV (8.8%), aadB (5.9%), and qnrA (2.9%). Our findings demonstrate that resistance to ampicillin, tetracycline, and ceftazidime in Campylobacter isolates was significantly (p ≤ 0.05) associated with the presence of blaTEM, tetA, and blaSHV genes, respectively. The high rates of AMR in Campylobacter isolates from our study are not surprising given the liberal use of antimicrobials and incomplete biosecurity provisions on farms. Of particular concern are resistance rates to those classes of antibiotics that should be reserved for human use (azithromycin, ciprofloxacin, and colistin). AMR was more prevalent in chicken farms that used multiple antibiotics, engaged in prophylactic treatment of the birds, and improperly disposed of antibiotic packages. The high prevalence of MDR in chicken-derived Campylobacter isolates from the different regions of our study reinforces the need for more prudent use of antimicrobial compounds in Bangladeshi chicken farms.

3.
World J Crit Care Med ; 13(1): 89026, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38633478

RESUMEN

BACKGROUND: Septic shock is a severe form of sepsis characterised by deterioration in circulatory and cellular-metabolic parameters. Despite standard therapy, the outcomes are poor. Newer adjuvant therapy, such as CytoSorb® extracorporeal haemoadsorption device, has been investigated and shown promising outcome. However, there is a lack of some guidance to make clinical decisions on the use of CytoSorb® haemoadsorption as an adjuvant therapy in septic shock in Indian Setting. Therefore, this expert consensus was formulated. AIM: To formulate/establish specific consensus statements on the use of CytoSorb® haemoadsorption treatment based on the best available evidence and contextualised to the Indian scenario. METHODS: We performed a comprehensive literature on CytoSorb® haemoadsorption in sepsis, septic shock in PubMed selecting papers published between January 2011 and March 2023 2021 in English language. The statements for a consensus document were developed based on the summarised literature analysis and identification of knowledge gaps. Using a modified Delphi approach combining evidence appraisal and expert opinion, the following topics related to CytoSorb® in septic shock were addressed: need for adjuvant therapy, initiation timeline, need for Interleukin -6 levels, duration of therapy, change of adsorbers, safety, prerequisite condition, efficacy endpoints and management flowchart. Eleven expert members from critical care, emergency medicine, and the intensive care participated and voted on nine statements and one open-ended question. RESULTS: Eleven expert members from critical care, emergency medicine, and the intensive care participated and voted on nine statements and one open-ended question. All 11 experts in the consensus group (100%) participated in the first, second and third round of voting. After three iterative voting rounds and adapting two statements, consensus was achieved on nine statements out of nine statements. The consensus expert panel also recognised the necessity to form an association or society that can keep a registry regarding the use of CytoSorb® for all indications in the open-ended question (Q10) focusing on "future recommendations for CytoSorb® therapy". CONCLUSION: This Indian perspective consensus statement supports and provides guidance on the use of CytoSorb® haemoadsorption as an adjuvant treatment in patients with septic shock to achieve optimal outcomes.

4.
Data Brief ; 54: 110293, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38524843

RESUMEN

Species belonging to the genus Pseudomonas is a rod shaped Gram-negative bacteria emerged as an important silkworm pathogen with broad-level multi-drug resistance. The extensive usage of antimicrobials in sericulture farming is gradually leading to the emergence of multi-drug resistance (MDR) strains, posing a significant threat to the well-being of both Bombyx mori L. and serifarmers. Pseudomonas spp. with MDR level may gets transmitted from the infected silkworm to human handlers either via direct contact or through contaminated feces. To understand the emerging concern of antimicrobial resistance (AMR) in Pseudomonas spp. provides insights into their genomic information. Here, we present the draft genome sequence data of Pseudomonas sp. strain RAC1 isolated from a flacherie infected Nistari race of Bombyx mori L. from the silkworm rearing house of Raiganj University, India and sequenced using the Illumina NovaSeq 6000 platform. The estimated genome size of the strain was 4494347 bp with a G + C content of 63.5%. The de novo assembly of the genome generated 38 contigs with an N50 of 200 kb. Our data might help to reveal the genetic diversity, underlying mechanisms of AMR and virulence potential of Pseudomonas spp. This draft-genome shotgun project has been deposited under the NCBI GenBank accession number NZ_JAUTXS000000000.

5.
Sci Rep ; 13(1): 14808, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684270

RESUMEN

Malaria prevalence has become medically important and a socioeconomic impediment for the endemic regions, including Purulia, West Bengal. Geo-environmental variables, humidity, altitude, and land use patterns are responsible for malaria. For surveillance of the endemic nature of Purulia's blocks, statistical and spatiotemporal factors analysis have been done here. Also, a novel approach for the Pf malaria treatment using methanolic leaf extract of Morus alba S1 has significantly reduced the parasite load. The EC50 value (1.852) of the methanolic extract of M. alba S1 with P. falciparum 3D7 strain is close to the EC50 value (0.998) of the standard drug chloroquine with the same chloroquine-sensitive strain. Further studies with an in-silico model have shown successful interaction between DHFR and the phytochemicals. Both 1-octadecyne and oxirane interacted favourably, which was depicted through GC-MS analysis. The predicted binary logistic regression model will help the policy makers for epidemiological surveillance in malaria-prone areas worldwide when substantial climate variables create a circumstance favourable for malaria. From the in vitro and in silico studies, it can be concluded that the methanolic extract of M. alba S1 leaves were proven to have promising antiplasmodial activity. Thus, there is a scope for policy-driven approach for discovering and developing these lead compounds and undermining the rising resistance to the frontline anti-malarial drugs in the world.


Asunto(s)
Malaria Falciparum , Malaria , Morus , Malaria/tratamiento farmacológico , Cloroquina , Metanol , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
6.
RSC Adv ; 13(31): 21345-21364, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37465579

RESUMEN

The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.

7.
J Biomol Struct Dyn ; : 1-11, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37477247

RESUMEN

The infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) resulted in a pandemic with huge death toll and economic consequences. The virus attaches itself to the human epithelial cells through noncovalent bonding of its spike protein with the angiotensin-converting enzyme-2 (ACE2) receptor on the host cell. Based on in silico studies we hypothesized that perturbing the functionally active conformation of spike protein through the reduction of its solvent accessible disulfide bonds, thereby disintegrating its structural architecture, may be a feasible strategy to prevent infection by reducing the binding affinity towards ACE2 enzyme. Proteomics data showed that N-acetyl cysteine (NAC), an antioxidant and mucolytic agent been widely in use in clinical medicine, forms covalent conjugates with solvent accessible cysteine residues of spike protein that were disulfide bonded in the native state. Further, in silico analysis indicated that the presence of the selective covalent conjugation of NAC with Cys525 perturbed the stereo specific orientations of the interacting key residues of spike protein that resulted in threefold weakening in the binding affinity of spike protein with ACE2 receptor. Interestingly, almost all SARS-CoV-2 variants conserved cystine residues in the spike protein. Our finding results possibly provides a molecular basis for identifying NAC and/or its analogues for targeting Cys-525 of the viral spike protein as fusion inhibitor and exploring in vivo pharmaco-preventive and its therapeutic potential activity for COVID-19 disease. However, in-vitro assay and animal model-based experiment are required to validate the probable mechanism of action.Communicated by Ramaswamy H. Sarma.

8.
J Fluoresc ; 33(6): 2229-2239, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37004622

RESUMEN

Inhomogeneity in single molecule electron transfer at the surface of lipid in a single vesicle has been explored by single molecule spectroscopic technique. In our study we took Di-methyl aniline (DMA), as the electron donor (D) and three different organic dyes as acceptor. These dyes are C153, C480 and C152 and they reside in different regions in the vesicle depending upon their preference of residence. For each probe, we found fluctuations in the single-molecule fluorescence decay, which are attributed to the variation in the reactivity of interfacial electron transfer. We found a non-exponential auto-correlation fluctuation of the intensity of the probe, which is ascribed to the kinetic disorder in the rate of electron transfer. We have also shown the power law distribution of the dark state (off time), which obeys the levy's statistics. We found a shift in lifetime distribution for the probe (C153) from 3.9 ns to 3.5 ns. This observed quenching is due to the dynamic electron transfer. We observed the kinetic disorderness in the electron transfer reaction for each dye. This source of fluctuation in electron transfer rate may be ascribed to the inherent fluctuation, occurring on the time scale of ~ 1.1 ms (for C153) of the vesicle, containing lipids.

9.
IJID Reg ; 7: 146-158, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37082426

RESUMEN

Objectives: This study was conducted to assess poultry farmers' knowledge and practices regarding antibiotics, antimicrobial usage (AMU), and antimicrobial resistance (AMR), and to identify the sociodemographic factors of inappropriate use of antibiotics in commercial poultry farms in Bangladesh. Methods: A qualitative survey of 140 farmers in Bangladesh was conducted from March to May 2019. A logistic regression model was used to identify factors associated with the inappropriate use of antibiotics. Results: 47.1% of farmers were unable to explain antibiotics, 42.9% used antibiotics for preventive purposes, 4.3% used them as growth promoters, 25.7% used them as suggested by veterinarians, 42.9% used leftover antibiotics, 50% did not maintain antibiotics residual withdrawal period, and 98.6% did not know about AMR. In bivariable regression analysis, sex and primary occupation of poultry farmers, their knowledge about withdrawal periods for antibiotics, and no contact with veterinary surgeons (VS) were found to be significantly associated with the inappropriate use of antibiotics, while only 'no contact with VS' was identified in multivariable regression analysis. Conclusions: The findings suggest an urgent need to improve understanding of antibiotics and AMR. Adequate supervision by veterinarians would ensure adherence to appropriate AMU patterns, and would limit the misuse of antibiotics and associated AMR development in farms.

10.
Travel Med Infect Dis ; 52: 102557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36805033

RESUMEN

Patients with respiratory viral infections are more likely to develop co-infections leading to increased fatality. Mucormycosis is an epidemic amidst the COVID-19 pandemic that conveys a 'double threat' to the global health fraternity. Mucormycosis is caused by the Mucorales group of fungi and exhibits acute angioinvasion generally in immunocompromised patients. The most familiar foci of infections are sinuses (39%), lungs (24%), and skin tissues (19%) where the overall dissemination occurs in 23% of cases. The mortality rate in the case of disseminated mucormycosis is found to be 96%. Symptoms are mostly nonspecific and often resemble other common bacterial or fungal infections. Currently, COVID-19-associated mucormycosis (CAM) is being reported from a number of countries such as the USA, Turkey, France, Mexico, Iran, Austria, UK, Brazil, and Italy, while India is the hotspot for this deadly co-infection, accounting for approximately 28,252 cases up to June 8, 2021. It strikes patients within 12-18 days after COVID-19 recovery, and nearly 80% require surgery. Nevertheless, the mortality rate can reach 94% if the diagnosis is delayed or remains untreated. Sometimes COVID-19 is the sole predisposing factor for CAM. Therefore, this study may provide a comprehensive resource for clinicians and researchers dealing with fungal infections, intending to link the potential translational knowledge and prospective therapeutic challenges to counter this opportunistic pathogen.


Asunto(s)
COVID-19 , Coinfección , Mucormicosis , Humanos , Mucormicosis/epidemiología , Pandemias , Brasil , Coinfección/epidemiología
11.
Cell Mol Life Sci ; 80(1): 1, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469134

RESUMEN

Emerging evidence illustrates that RhoC has divergent roles in cervical cancer progression where it controls epithelial to mesenchymal transition (EMT), migration, angiogenesis, invasion, tumor growth, and radiation response. Cancer stem cells (CSCs) are the primary cause of recurrence and metastasis and exhibit all of the above phenotypes. It, therefore, becomes imperative to understand if RhoC regulates CSCs in cervical cancer. In this study, cell lines and clinical specimen-based findings demonstrate that RhoC regulates tumor phenotypes such as clonogenicity and anoikis resistance. Accordingly, inhibition of RhoC abrogated these phenotypes. RNA-seq analysis revealed that RhoC over-expression resulted in up-regulation of 27% of the transcriptome. Further, the Infinium MethylationEPIC array showed that RhoC over-expressing cells had a demethylated genome. Studies divulged that RhoC via TET2 signaling regulated the demethylation of the genome. Further investigations comprising ChIP-seq, reporter assays, and mass spectrometry revealed that RhoC associates with WDR5 in the nucleus and regulates the expression of pluripotency genes such as Nanog. Interestingly, clinical specimen-based investigations revealed the existence of a subset of tumor cells marked by RhoC+/Nanog+ expression. Finally, combinatorial inhibition (in vitro) of RhoC and its partners (WDR5 and TET2) resulted in increased sensitization of clinical specimen-derived cells to radiation. These findings collectively reveal a novel role for nuclear RhoC in the epigenetic regulation of Nanog and identify RhoC as a regulator of CSCs. The study nominates RhoC and associated signaling pathways as therapeutic targets.


Asunto(s)
Dioxigenasas , Neoplasias del Cuello Uterino , Humanos , Femenino , Proteína rhoC de Unión a GTP/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias del Cuello Uterino/genética , Epigénesis Genética , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proliferación Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética
12.
Heliyon ; 8(12): e12207, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36578430

RESUMEN

A rapid surge in world population leads to an increase in worldwide demand for agricultural products. Nanotechnology and its applications in agriculture have appeared as a boon to civilization with enormous potential in transforming conventional farming practices into redefined farming activities. Low-cost portable nanobiosensors are the most effective diagnostic tool for the rapid on-site assessment of plant and soil health including plant biotic and abiotic stress level, nutritional status, presence of hazardous chemicals in soil, etc. to maintain proper farming and crop productivity. Nanobiosensors detect physiological signals and convert them into standardized detectable signals. In order to achieve a reliable sensing analysis, nanoparticles can aid in signal amplification and sensor sensitivity by lowering the detection limit. The high selectivity and sensitivity of nanobiosensors enable early detection and management of targeted abnormalities. This study identifies the types of nanobiosensors according to the target application in agriculture sector.

13.
Microbiol Resour Announc ; 11(11): e0065522, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36264266

RESUMEN

The genus Micromonospora was found to occur in a diverse range of habitats. Here, we report the genome sequence of an endophytic strain of Micromonospora sp., ANENR4. ANENR4 was isolated from the healthy roots of a peanut (Arachis hypogaea) plant from Egra, West Bengal, India.

14.
Sci Rep ; 12(1): 15493, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109567

RESUMEN

The main effectors in the innate immune system of Bombyx mori L. are antimicrobial peptides (AMPs). Here, we infected B. mori with varied inoculum sizes of Pseudomonas aeruginosa ATCC 25668 cells to investigate changes in morpho-anatomical responses, physiological processes and AMP production. Ultraviolet-visible spectra revealed a sharp change in λmax from 278 to 285 nm (bathochromic shift) in the hemolymph of infected B. mori incubated for 24 h. Further, Fourier Transform InfraRed studies on the hemolymph extracted from the infected B. mori showed a peak at 1550 cm-1, indicating the presence of α-helical peptides. The peptide fraction was obtained through methanol, acetic acid and water mixture (90:1:9) extraction, followed by peptide purification using Reverse Phase High Performance Liquid Chromatography. The fraction exhibiting antibacterial properties was collected and characterized by Matrix-Assisted Laser Desorption/Ionization-Time of Flight. A linear α-helical peptide with flexible termini (LLKELWTKMKGAGKAVLGKIKGLL) was found, corresponding to a previously described peptide from ant venom and here denominated as Bm-ponericin-L1. The antibacterial activity of Bm-ponericin-L1 was determined against ESKAPE pathogens. Scanning electron microscopy confirmed the membrane disruption potential of Bm-ponericin-L1. Moreover, this peptide also showed promising antibiofilm activity. Finally, cell viability and hemolytic assays revealed that Bm-ponericin-L1 is non-toxic toward primary fibroblasts cell lines and red blood cells, respectively. This study opens up new perspectives toward an alternative approach to overcoming multiple-antibiotic-resistance by means of AMPs through invertebrates' infection with human pathogenic bacteria.


Asunto(s)
Venenos de Hormiga , Antiinfecciosos , Bombyx , Infecciones por Pseudomonas , Animales , Humanos , Antibacterianos/farmacología , Hemolinfa , Metanol , Péptidos/química , Infecciones por Pseudomonas/tratamiento farmacológico , Agua
15.
Biotechnol Adv ; 60: 108022, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35870723

RESUMEN

Trichoderma reesei has been explored intensively in the laboratory and on an industrial scale for its highly potent cellulase secretion machinery since its characterization over 70 years ago. Emergence of new genetic tools over the past decade has strengthened the understanding of mechanism involved in transcription of cellulase genes in fungi and provided a boost to edit them at molecular level. Since several transcriptional factors work synergistically for cellulase expression in fungi; engineering of cellulase secretome for enhanced cellulase titer require combined manipulation of these factors. In the same context, CRISPR/Cas9 has emerged as a powerful, versatile genetic engineering tool for multiplex gene editing in fungi. It is true that considerable efforts with CRISPR technologies have largely developed fungal genetic engineering, but its application in fungi is still challenging and limited. The present review illustrates the precision, strengths and challenges of using CRISPR/Cas9 technology for cellulase engineering in T. reesei, highlighting key strategies that could be employed for strain improvement.


Asunto(s)
Celulasa , Trichoderma , Sistemas CRISPR-Cas/genética , Celulasa/genética , Empleo , Hypocreales , Trichoderma/genética , Trichoderma/metabolismo
16.
Microbiol Resour Announc ; 11(7): e0037022, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35758757

RESUMEN

Streptomyces strains are powerhouses for a diverse range of secondary metabolites, including antibiotics, anticancer and immunosuppressive agents, and enzymes. Here, we report the genome sequence of Streptomyces sp. strain PSAA01, which was isolated from a soil sample taken in Manas National Park, Assam, India, in the eastern Himalayan foothills of India.

17.
Sci Rep ; 12(1): 10818, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752640

RESUMEN

Antimicrobial resistance (AMR) among foodborne bacteria is a well-known public health problem. A sink survey was conducted to determine the AMR pattern of common foodborne bacteria in cloacal swab of broiler chickens and sewage samples from five wholesale chicken markets of Dhaka city in Bangladesh. Bacteria were identified by culture-based and molecular methods, and subjected to antimicrobial susceptibility testing. Resistance genes were identified by multiplex PCR and sequencing. Multidrug resistance (MDR) was observed in 93.2% of E. coli, 100% of Salmonella spp., and 97.2% of S. aureus from cloacal swab samples. For sewage samples, 80% of E. coli, and 100% of Salmonella and S. aureus showed MDR. Noteworthy, 8.3% of S. aureus from cloacal swab samples showed possible extensively drug resistance. Antimicrobial resistance genes (beta-lactamase-blaTEM, blaSHV; quinolone resistance gene-qnrS) were detected in a number of E. coli and Salmonella isolates from cloacal swab and sewage samples. The methicillin resistance gene (mecA) was detected in 47.2% and 25% S. aureus from cloacal swab and sewage samples, respectively. The findings envisage the potential public health risk and environmental health hazard through spillover of common foodborne MDR bacteria.


Asunto(s)
Pollos , Escherichia coli , Animales , Antibacterianos/uso terapéutico , Bangladesh/epidemiología , Pollos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Salmonella , Aguas del Alcantarillado , Staphylococcus aureus
18.
Microbiol Resour Announc ; 11(6): e0008122, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35616409

RESUMEN

Enterobacter sp. strain ASE was isolated from the gut of an infected domestic silkworm (Bombyx mori L.; Lepidoptera: Bombycidae). The whole-genome sequence (WGS) of the multidrug-resistant strain Enterobacter sp. ASE, which may contribute to our understanding of the strain's antibiotic resistance mechanism and virulence properties.

19.
Microbiol Resour Announc ; 11(4): e0117521, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35286159

RESUMEN

Species belonging to the genus Nocardia are known to be facultative human pathogens. There are also reports of Nocardia species capable of degrading various forms of rubber. Here, we report the whole-genome shotgun (WGS) sequence of Nocardia sp. strain BSTN01, isolated from stored water in latex-collecting cups thrown away near a local rubber processing unit in Tripura, India.

20.
Sci Rep ; 12(1): 630, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022476

RESUMEN

Purulia is a malaria-prone district in West Bengal, India, with approximately half of the blocks defined as malaria endemic. We analyzed the malaria case in each block of the Purulia district from January 1, 2016, to December 31, 2020. As per the API, 20 blocks of Purulia were assigned to four different categories (0-3) and mapped using ArcGIS software. An exponential decay model was fitted to forecast the trend of malaria cases for each block of Purulia (2021-2025). There was a sharp decrease in total malaria cases and API from 2016 to 2020 due to the mass distribution of LLINs. The majority of cases (72.63%) were found in ≥ 15-year age group. Males were more prone to malaria (60.09%). Malaria was highly prevalent among Scheduled Tribes (48.44%). Six blocks were reported in Category 3 (high risk) and none in Category 0 (no risk) in 2016, while no blocks were determined to be in Category 3, and three blocks were in Category 0 in 2020. The exponential decay model prediction is oriented towards gaining malaria-free status in thirteen blocks of Purulia by 2025. This study will incite the government to uphold and strengthen the current efforts to meet the malaria elimination goals.


Asunto(s)
Malaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...